Blog

Tackling supply chain challenges with AI

Tackling supply chain challenges with AI

management institute in indore, top management college in indore, management college in indore

COVID-19 sent a clear message to companies: supply chain disruption is a real and constant threat. Chip shortages made carmakers pause assembly lines. Scarce ingredients slowed production of sanitizers. And rising demand for key drugs and vaccines put pharma businesses under real pressure.

The good news: artificial intelligence can help. We’ve applied two novel AI methods to address supply chain disruptions like these.

AI in the mix

First, we’ve used what are calledcounterfactual explanations to help clients quickly update existing products. This identifies specific changes companies can make to reduce or avoid potential disruptions. For example, if a key ingredient for a chocolate bar is suddenly going to be unavailable in large quantities, counterfactual explanations can help find recipes that use less of the problematic ingredient, but still create a chocolate bar that meets the company’s criteria for taste, cost, and so on.

In contrast, traditional ways to find alternatives from a near-limitless range of options can often miss the best possible substitute. Some ingredients may be more expensive in one region than another. Alternatives might have undesirable properties or effects on the resulting product. Or there simply may not be enough of them. And because finding substitutions manually requires people with domain expertise, who are already in high demand, the whole process is going to be much slower.  

More fundamental change

The second approach we’ve applied is called deep generative networks. These come into play when a more fundamental change to a product or formulation is needed. We’ve used deep generative networks for the discovery of new drug molecules.And the same technique could be used across countless industries. For example, they could assist in the drive toward more sustainable products by finding alternatives to components that don’t meet sustainability standards.

A solution for now and next

These two approaches give companies a way to use AI to mitigate risk and ensure continuity through global supply chain disruptions. And of course, their use isn’t limited to times of disruption.

We could soon be using generative networks to inspire the design of novel products for completely new markets. Or we could use counterfactuals to improve the performance of the equipment that underpins supply chains. Picture a model that identifies the minimum changes needed in operating conditions to keep a piece of manufacturing equipment at peak performance. Or one that finds the changes needed to keep a delivery truck on the road for more time without maintenance. AI is helping address today’s problems – and uncovering tomorrow’s possibilities.

Leave a Reply

How would you rate your overall experience?

Your email address will not be published.

× How can I help you?